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Current NASA Human Mars architectures require delivery of approximately 20 metric 

tons of cargo to the surface in a single landing. A proposed vehicle type for performing the 

entry, descent, and landing at Mars associated with this architecture is a rigid, enclosed, 

elongated lifting body shape that provides a higher lift-to-drag ratio (L/D) than a typical entry 

capsule, but lower than a typical winged entry vehicle (such as the Space Shuttle Orbiter). A 

rigid Mid-L/D shape has advantages for large mass Mars EDL, including loads management, 

range capability during entry, and human spaceflight heritage. Previous large mass Mars 

studies have focused more on symmetric and/or circular cross-section Mid-L/D shapes such 

as the ellipsled. More recent work has shown performance advantages for non-circular cross 

section shapes. This paper will describe efforts to design a rigid Mid-L/D entry vehicle for 

Mars which shows mass and performance improvements over previous Mid-L/D studies. The 

proposed concept, work to date and evolution, forward path, and suggested future strategy 

are described. 

Nomenclature 

CL = aerodynamic coefficient of lift  

CD = aerodynamic coefficient of drag  

g = acceleration due to gravity 

L/D = lift-to-drag ratio 

q =  heat flux, W/cm2 

ρ∞ =  freestream density, kg/m3 
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V∞ =  freestream velocity, km/s 

XCG = x-position of the center of mass, meters 

YCG = y-position of the center of mass, meters 

I. Introduction  

 

Humans have long been fascinated with Mars. The earliest visions of human missions to Mars come from science 

fiction and involved a wide range of methods of transportation1. In his publication Das Marsprojekt, Wernher von 

Braun outlined an early technical approach to a human Mars mission campaign2. Von Braun’s approach utilized a 

winged landing craft, but at the time the low density of the Martian atmosphere was unknown. More recent studies 

have considered multiple approaches for large mass Mars landing, a number of which merit continued study. One of 

the approaches which has shown merit has become known as “Mid-L/D”, used to describe an entry vehicle which is 

flown at a hypersonic lift-to-drag ratio between that of a typical entry capsule (L/D ~0.3) and that of the Space Shuttle 

Orbiter (L/D ~1.5) or higher L/D winged vehicles. The Mid-L/D vehicle is intended to be flown at L/D = 0.5-0.7 

hypersonically and supersonically.  

In the 1990s, a study considered a rigid Mid-L/D approach coined as the “ellipsled” as part of an effort to perform 

aerobraking/aerocapture for a habitation module called TransHab3. The ellipsled was desirable since it was roughly 

the shape of a payload fairing (PLF) of a launch vehicle. It was thought that the launch vehicle PLF could double as 

the aero-entry “aerobrake” for atmospheric maneuvers. Some compromise regarding the aerodynamic shape and its 

performance would need to be made to best meet both ascent and aerocapture/entry requirements and the ellipsled 

with its circular cross-section and elliptical nose was the proposed solution. Hollis looked at variations of the geometry 

and worked to characterize the aerodynamics and aeroheating4. The ellipsled was also considered as part of additional 

human Mars studies.5,6,7 In these studies, the ellipsled aeroshell was jettisoned as needed depending on the mission 

phase and application. For example, the aeroshell could be jettisoned prior to landing to expose a set of engines. 

Aeroshell jettison prior to the supersonic retropropulsion (SRP) event was believed to reduce overall system mass, 

although the details of the jettison event were not studied in depth.  

More recent efforts have ensued as a part of NASA’s Evolvable Mars Campaign (EMC)8. Initially, a Cycle 0 Mid-

L/D effort was completed which considered different concepts: rigid, folded wing, and deployable Rogallo wing. A 

rigid, slender body shape was carried forward into a Cycle 1 Design Study and is the focus of this paper.  

The Mid-L/D concept continues to warrant additional design work due to the qualities and performance it can 

provide.  The moderate lift-to-drag ratio can assist with management of loads and improve downrange and crossrange 

capability, as well as entry corridor width and potentially landing accuracy. A fully rigid concept reduces design, 

development, test, and evaluation (DDT&E) cost, leveraging proven tools, materials, control approaches, and 

design/verification processes.  Based on existing systems and practices, it minimizes requirements for technology 

developments and flight testing.  

The current configuration of the Mid-L/D vehicle used in the Cycle 1 Design Study embodies some of the lessons 

learned from the Cycle 0 analyses. Rather than serve as both the Space Launch System (SLS) launch shroud and 

entry/aerocapture aeroshell, it was decided to launch the Mid-L/D within the planned 10 meter (m) diameter SLS PLF. 

The rationale was twofold: 1) the previous dual-use approach resulted in negligible mass savings, in particular due to 

the necessity for acoustic blankets within the Mid-L/D shape if used as the launch rocket fairing, and 2) the impacts 

to the design and testing of the SLS would be significant. Thus the current Mid-L/D design efficiently utilizes the 

internal dimensions of the SLS PLF to maximize payload volume and aerodynamic surface area. Another finding from 

Cycle 0 was that deployment of a lander from within the aeroshell (i.e. aeroshell jettison) at supersonic conditions was 

indeed a difficult design approach which would warrant a significant flight test program. In addition, it would produce 

large debris on the approach to a Mars landing. In terms of overall entry mass, utilizing a deployable lander did not 

appear to generate much, if any, savings when including the additional mass of an aeroshell separation system. The 

Cycle 1 vehicle is designed with lander components integrated into the rigid aeroshell and the aeroshell is retained 

through landing. Supersonic retropropulsion is the only remaining major dynamic EDL event.   

II. CobraMRV Mid-L/D Concept 

A. Objectives 
The primary objectives of the study were to design and analyze a rigid Mid-L/D vehicle concept capable of 

delivering 20 metric tons (mt) of cargo to the surface of Mars. The design had to satisfy a number of operational 

requirements and constraints. The vehicle was sized to provide sufficient mass and volume capability to accommodate 
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the cargo defined by the EMC team. A cargo manifest reference was provided as input. Of these items, the Mars 

Ascent Vehicle (MAV) was determined to be the driving design case, so the majority of the team’s effort was spent 

addressing its incorporation into the Mid-L/D design. However, the other cargo manifests were also considered.  

Additional operational constraints considered include those related to the launch vehicle (SLS), in-space 

operations, and surface operations. These are discussed in more detail in the Concept of Operations section.  

B. Overview 

The CobraMRV is a high ballistic number Mid-L/D Rigid Vehicle (MRV) concept initially designed using the Co-

Optimization Bluntbody Re-entry Analysis (COBRA) shape optimization process and the parametric Cobra shape 

class9,10 developed at Ames Research Center. The resultant vehicle concept is called the CobraMRV. It is a fully rigid 

entry vehicle concept which minimizes DDT&E by leveraging proven heritage tools, materials, controls, and 

processes. This also minimizes the need for technology development and flight testing. It efficiently utilizes the 

dimensions of the SLS PLF to maximize payload volume and aerodynamic surface area for lift and drag at high angle-

of-attack.  The outer mold line (OML) is designed to provide desirable aerodynamic characteristics in pitch, yaw, and 

roll, as well as generate sufficient control authority from the body flaps. The shape was also designed to attempt to 

keep the center of mass of the CobraMRV aligned with the centerline of the SLS when mounted within the SLS PLF.   

The lander components are integrated in the rigid aeroshell and the aeroshell is retained all the way to landing. In 

most previous studies, the Mid-L/D aeroshell was shed prior to touchdown. This is a significant difference. By 

retaining the aeroshell, the transition to a powered retro burn is simplified. The descent engines integrate into the lower 

sides of the OML. They are ignited at a supersonic condition and complete the braking and terminal descent 

maneuvers, safely steering the vehicle to a soft landing at a horizontal orientation. The aeroshell protects the cargo 

from the environment during the entry, SRP phase, and landing, as well as aerocapture. The control scheme uses 

reaction control system (RCS) jets for maneuvering. Split body flaps are used for trim during the aerocapture/entry 

phase, and main engine throttling is used for trim during the powered descent phase.  

Figure 1 shows the final OML, CobraMRV 2908b, that was down selected from the Pareto front of optimized 

shapes obtained through the COBRA shape optimization process. The vehicle is 19.8 m long by 8.8 m wide at the 

maximum width point. The maximum height point occurs at the aft most portion of the vehicle and is 7.3 m. A split 

body flap with an approximate 31 deg cant is placed aft of the vehicle with a fairing along the aft lower surface to 

accomplish a smooth transition from the windside base shape to the actuating rectangular body flaps which are 1.6 m 

long by 4 m wide, as shown in Fig. 1. As a point of comparison, the total flap area is very similar to that of the Space 

Shuttle Orbiter body flap (12.62 m2).  Doors on top of the vehicle allow access to the interior cargo bay, similar to the 

Space Shuttle payload bay doors, and the rear incorporates a door which rotates down to become an access ramp when 

deployed. 

 
Figure 1.  Outer Mold Line definition (CobraMRV 2908b). 
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C. Concept of Operations  

 The CobraMRV developed to support the EMC architecture is 

launched on a SLS Block 2 Launch Vehicle within a 10 m PLF. 

Figure 2Error! Reference source not found. shows the 

CobraMRV in the launch configuration with an external Solar 

Electric Propulsion (SEP) stage mounted within a representative 

payload adapter. The CobraMRV maximizes the use of the 

available PLF dimensions and the estimated center of gravity of the 

vehicle stack is located on the SLS centerline. Following the launch 

of the CobraMRV into a transfer orbit, the SEP stage is used to 

initiate a gradual outward spiral into a trans-Mars trajectory. Spiral 

time to Earth escape for a reference 300 kW SEP is approximately 

2.5 years.  

 During the Earth to Mars Transit phase, the CobraMRV relies 

on the SEP stage for propulsion, power and communications. 

Thermal control for the CobraMRV is provided via deployable 

radiators mounted on the inner surfaces of the cargo bay doors, 

similar to the Space Shuttle. The transit time between Earth and 

Mars for the assumed reference trajectory is 1.2 years. The SLS 

injection orbit and the durations of the outward spiral and Mars transit are driven by the gross mass of the CobraMRV. 

Two days prior to arrival at Mars, the SEP stage is jettisoned and the CobraMRV assumes responsibility for power 

generation and communications. Fuel cells utilize the liquid methane and oxygen propellants stored in the CobraMRV 

descent and landing tanks to generate electrical power. Since the cargo bay doors must be closed for the aerocapture 

maneuver, a water sublimation system is used to reject waste heat until the radiators can be redeployed. Following the 

completion of successful capture at Mars, the CobraMRV RCS is used to enter the reference orbit. 

For EMC cargo delivery missions, the CobraMRV will typically stay in Mars orbit for only a short period of time 

before initiating the de-orbit maneuver. For a crewed mission, however, the CobraMRV may need to remain in Mars 

orbit for up to a year before the crew arrives in a separate transit vehicle. During this extended parking orbit, a set of 

solar arrays is deployed to generate electrical power. After the crew transfers into the CobraMRV and completes the 

vehicle checkout, the solar arrays are jettisoned and the cargo bay doors are closed to prepare for de-orbit followed by 

entry, descent, and landing (EDL). With the exception of minor differences in vehicle mass properties due to 

consumables and jettisoned hardware, the aerocapture and entry configurations of the CobraMRV are identical.  

To initiate the EDL sequence, a de-orbit burn is completed using the RCS. The vehicle performs a lifting entry, 

using RCS bank angle modulation to manage g-loads and steer the vehicle accurately to the landing target. Split 

body flaps are used to provide pitch and yaw trim across the Mach range. As the vehicle approaches the surface of 

Mars, panels on either side of the windward heat shield are either articulated or jettisoned to expose two banks of 

descent main engines. The engines are ignited at supersonic free stream conditions and are used to decelerate the 

CobraMRV to a soft, controlled landing. Figure 3Error! Reference source not found. 

Figure 3. CobraMRV Entry, Descent, and Landing. illustrates the nominal entry, descent, and landing (EDL) 

sequence.   

 

Figure 2. CobraMRV in SLS 10 m PLF. 
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Figure 3. CobraMRV Entry, Descent, and Landing. 

The transition to powered descent at Mars occurs at a relatively low altitude and high velocity, as noted in Figure 

3. The delta-V allocation for the Mars powered descent maneuver is 650 m/s – roughly one-third of the delta-V 

required for powered descent at the Moon – and the retained aeroshell continues to contribute some drag. As a result 

of these factors, the mass impact of retaining the aeroshell through landing is not as large as might be expected. The 

aeroshell also protects the lander systems and cargo from the SRP flowfield, as well as the ejecta and dust generated 

during terminal descent and landing.  In addition, the elimination of aeroshell disposal constraints for emplaced surface 

assets provides greater flexibility in the design and optimization of the Mars EDL trajectory. 

 Surface operations begin after the vehicle has landed safely on Mars. Using the residual methane and oxygen 

propellants from the CobraMRV descent tanks, fuel cells provide electrical power for up to 24 hours until the 

connection to a surface power system is established. Two radiator panels stowed on the aft of the CobraMRV are 

deployed to provide thermal control for the vehicle systems and cargo on the surface of Mars. As shown in Figure 3, 

very large radiators are required to support the generation and liquefaction of oxygen from the atmosphere of Mars to 

fill the MAV tanks. The primary function of the cargo bay doors is to enable a vertical launch of the MAV from the 

landed CobraMRV. The cargo bay door radiators are not required on the surface of Mars, so the cargo bay doors can 

be opened or remain closed, as appropriate for each cargo configuration. In addition, a ramp can be deployed from the 

aft end of the vehicle, as shown in Figure 4, toError! Reference source not found. provide flexible and convenient 

access to the internal cargo bay for mobile vehicles and personnel. The ramp can also be stowed to provide protection 

from dust storms. 

 The CobraMRV team developed several operational scenarios for launching the MAV. In the reference approach 

illustrated in Figure 4, the MAV crew approaches the CobraMRV in a pressurized rover (1) and executes an intra-

vehicular (IVA) transfer to the MAV crew module (2). Following a successful MAV checkout, the rover departs and 

the transfer tunnel is retracted (3). The cargo bay doors are then opened to enable the launch of the MAV (4). To help 

alleviate concerns regarding the vibro-acoustic environment at liftoff, the MAV is mechanically elevated several 

meters with a flame deflector directing the engine exhaust out the aft end of the vehicle (5). The MAV then begins its 

ascent to Mars orbit (6). During the design process, it became clear that the cargo bay doors imposed a significant 

mass penalty on the vehicle primary structure. As a result, the CobraMRV team outlined several scenarios involving 

the aft extraction of the MAV from the CobraMRV aeroshell via a rail system or a wheeled cart, for future 

consideration.  The 2908b variant of the CobraMRV aeroshell and the interior subsystem layout illustrated in Figure 

4 and Figure 5 are intended to facilitate the aft insertion/extraction of large cargo items. 
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Figure 4. Concept of Operations for MAV Launch. 

D. Vehicle Integration and Structural Design 

The CobraMRV rigid body is an efficient and flexible EDL platform for the delivery of cargo to the surface of 

Mars. The aeroshell configuration reflects a balance between the mass, volume, and operational requirements for the 

EMC reference cargo configurations and key EDL performance requirements, including aerodynamic and stability 

and control characteristics. In addition to EDL and Mars surface operations, the CobraMRV, as an element of a large 

and complex Mars transportation architecture, must also reflect end-to-end life cycle considerations, such as 

manufacturing and assembly, testing, flight certification, ground processing, launch vehicle integration, launch 

operations, and in-space operations. 

The “truck-like” CobraMRV fuselage supports a comprehensive Mars surface mobility strategy. The 4.0 m wide 

aft access ramp combined with the low 2.1 m cargo deck height enables the efficient utilization of rovers, carts, and 

other mobile units in a multiple lander mission architecture with landing sites spread across several square kilometers. 

These CobraMRV design features also simplify IVA crew and cargo transfers with surface transportation elements 

and enable efficient EVA crew access to the surface of Mars using the aft ramp or a short set of stairs.   

The interior layout of the CobraMRV aeroshell is driven by the EMC requirement for a large, general purpose 

cargo bay. The cargo bay is centralized to anchor the vehicle center of gravity near the reference aerodynamic trim 

point. The arrangement of the vehicle subsystems, particularly the propulsion system elements, about the central cargo 

area is designed to maximize the available cargo volume/dimensions, as well as to provide a wide central corridor to 

support a variety of cargo elements – MAV, surface habitat, logistics modules, rovers, racks, and containers. 

The MAV is the most challenging of the EMC cargo elements. It is a large and massive spacecraft that must be 

loaded with liquid methane prior to SLS launch, maintained in a zero boil-off state throughout the mission, and 

gradually filled with liquid oxygen that is generated from the atmosphere of Mars via an in-situ resource utilization 

(ISRU) system post-landing.  At the end of the surface mission, all of the external mechanical, fluid, data, and power 

connections between the CobraMRV and the MAV must be severed to enable MAV liftoff. It should be noted that the 

MAV shown in Error! Reference source not found. and Figure 5 was originally developed for the HIAD concept, 

a blunt body decelerator with a circular rigid heat shield augmented with inflatable toroids to increase drag area. A 
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redesign of the MAV tailored for the CobraMRV will improve load path integration with the CobraMRV aeroshell 

primary structure for launch and entry. The MAV side hatch would also be clocked aft to eliminate the necessity for 

a rover docking tunnel and to simplify IVA crew and cargo transfer.   

The propulsion system consists of eight descent engines arranged in two banks of four. Each LO2/LCH4 engine 

provides a maximum thrust of 100 kN, for a total of 800 kN. The engines are located to either side of the cargo bay 

with an outward cant angle of 10 degrees. The location and orientation of the engines is designed to nominally provide 

a balanced moment state during powered flight with differential main engine throttling used for gross pitch and roll 

control. The propulsion system also includes twenty RCS thrusters providing 4,450 N each, which are used for active 

flight control and attitude maintenance during atmospheric and powered flight. This includes a set of four axial RCS 

thrusters which are used for small orbit adjust maneuvers, including the de-orbit burn. Four pairs of spherical 

propellant tanks are arranged symmetrically fore and aft of the main cargo area to limit center of gravity migration 

during powered flight.   

 
Figure 5. Cutaway View of CobraMRV. 

One of the key advantages of the CobraMRV concept is the extensive aerospace heritage in the design, analysis, 

manufacturing, testing, and certification of rigid entry bodies. The CobraMRV team combined expertise and 

analysis tools from several NASA centers to evaluate structural layouts and key design features at varying levels of 

detail to gain an improved understanding of the structural sensitivities and mass drivers. The resulting CobraMRV 

preliminary structural design is based on a traditional semi-monocoque approach combining a stressed skin and a 

primary structure composed of longerons, ribs, and frames. The cargo bay doors were conservatively modeled as 

non-load bearing elements. Conventional aluminum alloys were utilized for the primary and secondary structure and 

skin panels to reduce overall DDT&E cost and risk. To support the initial structural layout and mass estimation 

process, enveloping load cases were developed for Earth launch (5.0 g axial, 2.0 g transverse) and entry, propulsive 

deceleration, and landing at Mars. Entry loads were based on EDL trajectory simulations, with the trajectories 

constrained to avoid exceeding 4.0 g through the chest for the crew for any substantial duration.  

E. Flight Performance  

 

1. Aerodynamics and Stability 
 

The aerodynamics for the CobraMRV 2908b configuration were calculated using the Cart3d Euler CFD code for 

a Mach range of 1.5 – 12. Error! Reference source not found. shows the lift coefficient, drag coefficient, and L/D. 

The coefficients shown were calculated for a reference area of 65 m2, with an associated reference length of 9.1 m. 

During hypersonic entry, the vehicle is trimmed at an angle of attack of 55 deg. This results in an L/D of 0.54, with 

an associated trim center of gravity (CG) location 10.55 m back from the nose and 1 m above the waterline.  
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Figure 6. Aerodynamic Coefficients for CobraMRV 2908b with Reference Area = 65 m2. 

A split flap is used during entry to help maintain the desired angle of attack and to minimize the sideslip angle, as 

shown in Figure 7. CobraMRV split flap at 15 deg and 20 deg deflectionError! Reference source not found.. The 

flaps were sized to provide a sufficient trim capability for a range of CG locations, based on Shuttle orbiter experience. 

Angle of attack trim sensitivity, without flap (elevon) deflections, to changes in XCG (fore/aft), is 0.38 deg/cm. 

However, by utilizing elevon deflections, the XCG capability is sized to +/- 20 cm while still maintaining a 55 deg trim 

angle of attack across the full Mach regime from supersonic to hypersonic. This range of XCG capability is the same 

percentage of the body length as the Shuttle orbiter. Using minimal aileron deflections and sideslip angles, the YCG 

capability allows for up to +/-5 cm deviation, which is three times the off-centerline capability of the Shuttle orbiter. 

These values are for elevon deflections of +/-20 deg and +/-2.5 deg aileron deflection.  

 
Figure 7. CobraMRV split flap at 15 deg and 20 deg deflection. 

During the powered descent portion of flight, differential throttle is used to perform trim management of the 

vehicle.  

Primary attitude maneuvering throughout all atmospheric phases is accomplished via a set of 20 x 4,450 N (1,000 

lb) RCS jets. The jets are all notionally located in the aft plane of the vehicle, and are sized to provide a minimum of 

5 deg/sec2 of torque in the roll, pitch, and yaw body axes. 
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2. Aerocapture Trajectory  
 

The vehicle arrives at Mars with a relative velocity of 6.2 km/s (study assumption). The post-aerocapture target 

orbit at Mars has a period of 1 sol (250 km by 33,793 km). The purpose of aerocapture is to reduce the spacecraft 

energy to the target 1 sol orbit using a single atmospheric braking maneuver.   

Following the aerocapture, a two burn sequence is assumed to achieve the final orbit. The first burn occurs at 

apoapsis, and is used to raise the periapsis to the 250 km altitude. Without this maneuver, the spacecraft would re-

enter the atmosphere. The second of the two burns is a cleanup maneuver (nominally zero delta-V) to adjust the 

apoapsis to the final target of 33,793 km.  

The nominal aerocapture trajectory is shown in Figure 8. The aerocapture trajectory assessment was performed 

using the Flight Analysis Simulation Tool (FAST). The left panel shows the altitude vs velocity profile. The spacecraft 

enters at 6.2 km/s and exits at about 4.7 km/s. The plot shows a minimum altitude of 40 km during aerocapture. The 

right panel depicts the sensed acceleration, in Earth g. The nominal case shows a peak g-load of 1.3 Earth g. The 

aerocapture trajectory was used as input to determine the set of flight conditions for aerothermal cases.   

A Monte Carlo assessment was also completed for aerocapture11. As a result of this assessment, the delta-V budget 

for post-aerocapture cleanup was determined to be 40 m/s.  

 

  

Figure 8. Nominal Aerocapture Trajectory. 

3. Entry, Descent, and Landing Trajectory  
 

Following a period of loiter in Mars orbit, a de-orbit burn is performed to target the desired Entry Interface (EI) 

state. The in-plane nominal delta-V for this burn is 17 m/s. A total of 20 m/s was budgeted for this maneuver, based 

on engineering assumptions.  

The simulation used for the EDL analysis is the Simulation of Rocket Trajectories (SORT) tool12. Table 1 shows 

the assumed entry state and key assumptions used in the EDL simulation. The inertial flight path angle of -10.8 deg 

was selected during the design process. The rest of the variables in the table are assumptions. The Mars GRAM 2005 

atmospheric model was used, with an epoch of May 10, 2033, 0:00 UTC.  

 

Table 1. Entry State and Key EDL Assumptions. 

Parameter Value Units 

Geocentric radius 3522200 m 

Declination 81.558 deg 

Longitude 0.0 deg 

Inertial Velocity 4700 m/s 

Inertial Azimuth 180 deg 

Inertial Flight path angle -10.8 deg 

Total main engine thrust  8*100,000 N 

Main engine cant angle 10.0 deg 
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Main engine Isp 360 sec 

RCS Isp 325 sec 

 

The entry bank profile is selected using parameter optimization. The optimizer is given eight bank segments to 

determine a bank profile which minimizes Mach number at a given altitude for the start of SRP. Limits are placed on 

the range of bank angle that can be selected. A range of 10 deg (near full lift-up) to 90 deg (lift vector to the side) of 

bank angle was used for this study. Additionally, a minimum altitude constraint and a limit on the maximum vertical 

velocity are used to ensure that the solution will have sufficient margin for guided, dispersed cases. Figure 9 shows 

the nominal bank profile. At 1000 m/s relative velocity, a 10 deg bank angle is held until the start of the powered flight 

phase.  

 
Figure 9. Nominal Entry Bank Profile.  

 The resulting nominal trajectory is shown in Figure. The maximum dynamic pressure is 7700 Pa. The maximum 

load is limited to 2.5 g, and occurs at the same velocity as the maximum dynamic pressure, approximately 3400 m/s. 

The magnitude of the load pulse is shown in the right panel of Figure 10. The entry load ramps up at 100 sec after EI, 

and continues for just over six minutes for this trajectory, dropping to 0.4 g during the lift-up portion near the end of 

the entry phrase. The powered descent burn begins at about 480 sec post-EI at a Mach number of just under Mach 2.  

For the constant thrust portion of the burn, the loads vary from about 1.1-1.3 Earth g (at 80% throttle). A constant 

velocity phase of 1.0 Mars g (0.38 Earth g) begins at 12.5 m above the surface, with an assumed touchdown velocity 

of 2.5 m/s. (not shown in Figure.) 

 

 
Figure 10. Nominal EDL Trajectory.  
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The selection of the altitude to transition to powered descent, or SRP phase, is a crucial performance variable. The 

SRP maneuver should begin at a sufficiently high altitude for the powered descent to be able to remove any remaining 

velocity following aerodynamic entry, as well as fly out any state error. The lowest altitude that enables the elimination 

of these errors, given maximum thrust limits, will likely provide the minimum propellant solution. During Cycle 1, 

the selected nominal transition altitude was just under 3.2 km. Figure 11 shows that for every kilometer increase in 

altitude, an additional 600 kg of propellant is required. Monte Carlo analysis will drive the selection of this transition 

altitude parameter. Preliminary Monte Carlo analysis for the entry, descent, and landing has been completed using the 

FNPEG13 guidance algorithm and is planned as the subject of a future paper. 

 

 
Figure 11. Transition to SRP Sensitivity.  

F. Aerothermal   

High-fidelity predictions of aerothermal environments were made using the Langley Aerothermodynamic Upwind 

Relaxation Algorithm (LAURA) code14,15 and the High-Temperature Aerothermodynamic Radiation (HARA) 

code16,17, which provided convective and radiative heat flux distributions, respectively. Freestream composition was 

assumed to be 97% CO2 and 3% N2 by mass while the flowfield was modeled with an eight-species composition: CO2, 

CO, N2, O2, NO, C, N, and O. The vehicle surface was modeled as fully-catalytic to homogeneous recombination and 

having a radiative equilibrium temperature. In the present study, the HARA radiative heat flux calculations were 

performed on fully-converged LAURA flowfield calculations using the tangent-slab approach. 

Freestream conditions for these CFD calculations were taken at points spaced out along the aerocapture and entry 

trajectories so as to bound the heat pulses. The trimmed vehicle attitude of 55 degrees angle of attack was applied to 

all cases. Based upon an assessment of the laminar solutions (particularly the ratio of laminar momentum-thickness 

Reynolds number to boundary-layer edge Mach number), transition to turbulence was predicted to occur early in the 

trajectory, prior to peak heating. Therefore, fully-turbulent convective heat flux predictions were made for all database 

solutions, using the Cebeci-Smith algebraic turbulence model18. Additionally, only windward distributions were 

provided for database development. Accurate leeside predictions of convective heat flux require more 

computationally-complex turbulence models and higher-resolution grids to accurately capture the separated wake 

flow. Accurate leeside modeling of radiative heat flux would further require the volume grid to be extended into the 

base flow region to enable application of a full ray-tracing approach19, rather than the less computationally-demanding 

tangent-slab approach. 

A complete database of high-fidelity solutions was developed for the CobraMRV based upon an initial 

configuration of the vehicle (CobraMRV 7212a). This database was then used to anchor engineering-fidelity 

aerothermal models used for vehicle TPS sizing. Continued iterative improvements to the CobraMRV design 

eventually led to an updated configuration (CobraMRV 2908b). An attempt was made to leverage the existing 

CobraMRV 7212a database of CFD solutions such that a small number of additional CFD solutions applied to 

CobraMRV 2908b could be used to generate correction factors for the existing CobraMRV 7212a engineering 

aerothermal models. To this end, four freestream conditions were identified for analysis of the CobraMRV 2908b 
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configuration. These were the freestream conditions corresponding to CobraMRV 7212a peak convective and peak 

radiative heat flux along both the aerocapture and entry trajectories. 

To illustrate the aerothermal environments predicted for the CobraMRV, Figure 12 and Figure 13 show 

unmargined high-fidelity CFD heat flux distributions for the 2908b configuration. This solution corresponds to the 

freestream condition at which maximum total heat flux is encountered during aerocapture. Figure 12 depicts total 

laminar and turbulent heat flux distributions along the vehicle windward centerline, along with a breakdown into 

convective and radiative components. A contour plot of total turbulent heat flux along the entire windward surface is 

provided in Figure 13. With the contribution of radiation, the total heat flux is largest at the aft end of the body, 

reaching a value of approximately 55 W/cm2. Overall, the heating is high in both the forward nose region and at the 

aft end of the vehicle. 

 

 

 
Figure 12. CobraMRV 2908b windward centerline (unmargined) heat flux distributions at the peak total heat 

flux conditions: V∞ = 5.65 km/s and ρ∞ = 2.9 x 10-4 kg/m3. 

 

 
Figure 13. CobraMRV 2908b windward (unmargined) turbulent total heat flux distribution at peak total heat 

flux conditions: V∞ = 5.65 km/s and ρ∞ = 2.9 x 10-4 kg/m3. 

 

Several trends in heat flux distribution have been identified by observing the solutions in the high-fidelity database. 

Peak convective heat flux generally occurs on the nose region of the vehicle as the flow rapidly expands forward away 

from the stagnation point and onto the leeside of the body. This peak is evident for both laminar and turbulent flows, 

but tends to be further augmented by turbulence. For the CobraMRV 2908b configuration, there is a milder peak in 

convective heat flux that occurs at the centerline of the canted aft-end of the body. Turbulence augments the convective 

heat flux increase in moving aft along the centerline away from the stagnation point as the boundary layer grows more 

rapidly and entrains higher-energy flow from within the shock layer. For the condition shown in Figure 12, this 

turbulent-augmented heat flux at the aft centerline of the body is on par with the peak at the nose region. The radiative 

heat flux was found to generally increase with distance along the body as the shock stand-off distance grew 

monotonically and exposed the surface to a larger volume of radiating gas. 
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Table 2 lists the values of unmargined maximum total heat flux on the CobraMRV 2908b windward surface, along 

with the corresponding breakdown into convective and radiative components.  The trajectory conditions shown 

correspond to peaks in convective and radiative heat flux histories along the aerocapture and entry trajectories. In 

terms of relative magnitude, convective heat flux is the dominant contributor to total heating compared to radiative 

heat flux over the entire aerocapture trajectory. The convective heat flux values experienced by the vehicle are the 

highest along the aerocapture trajectory. In contrast, the vehicle experiences highest radiative heat flux late along the 

entry trajectory. In the later portions of the entry trajectory, radiative heat flux was seen to be comparable to – or even 

exceed – the magnitudes of convective heat flux at the aft end of the vehicle.  At these slower velocities, the CO2 

molecules experience thermal excitation as they pass through the bow shock, but the resulting temperatures are not 

high enough for dissociation to occur. Rather, these excited molecules emit infrared radiation, contributing 

significantly to the total incident heat flux to the vehicle surface. Thus, the radiative heat flux component cannot be 

neglected, even for entry from orbit, in making accurate predictions of total heat load at Mars. 

 

Table 2. CobraMRV-2908b Maximum (Unmargined) Total Heat Flux along Aerocapture and Entry 

Trajectories at Conditions Corresponding to Peak Convective and Radiative Heat Flux.  

 Aerocapture Entry 

 Peak 

Convective 

Condition 

Peak 

Radiative 

Condition 

Peak 

Convective 

Condition 

Peak 

Radiative 

Condition 

V∞, km/s 5.65 5.10 4.34 3.05 

ρ∞, kg/m3 2.90 x 10-4 3.14 x 10-4 7.19x10-4 1.65x10-3 

qtotal (qconv+qrad), W/cm2 55.0 (54.0+1.0)n 38.5 (32.2+6.3)a 38.0 (27.3+10.7)a 26.3 (12.9+13.4)a 

Note: Superscript n denotes that maximum heat flux occurs in the nose region; a denotes that it occurs in the aft 

region. 

G. Thermal Protection System  
 

Preliminary TPS materials selection and TPS sizing was performed based on the provided aeroheating 

environments and trajectories. The solutions were obtained by extrapolating from the provided inputs, and employing 

CFD-anchored aerothermal databases based on the CBAERO software20. TPS material selection criteria were based 

on expected heating environments with margins. The TPSSizer software21 is used to perform the design. The TPS 

design employs a rigid outer aeroshell with the TPS bonded to the structure. Dual heat pulse capability is required for 

the Mid-L/D TPS materials. Two OML configurations were investigated, starting initially with the CobraMRV 7212a 

shape, and then transitioning to the CobraMRV 2908b configuration for improved performance.    

The aerocapture and entry time histories are concatenated into a single continuous trajectory, and the aeroheating 

environments are then obtained as a function of time along the aerocapture and entry trajectory by interpolating the 

aerothermal data base as a function of Mach number, freestream dynamic pressure and angle of attack. For the heat 

transfer analysis, as part of the TPS sizing process, a sufficiently long in-orbit cool off period is inserted at the end of 

the aerocapture trajectory and the beginning of the entry trajectory. 

Mission maximum surface temperature distribution is shown in Error! Reference source not found.4, which is 

used as the basis for the TPS material selection. Several candidate windward TPS materials were evaluated, including 

TUFI coated AETB-8 tile and other ablator systems (SLA-561V and Conformal PICA). Error! Reference source 

not found. summarizes the TPS system masses for the various candidate materials.  The margined maximum surface 

temperatures observed are above the allowable limit for reusable TPS materials (e.g. TUFI coated tile). Body flaps 

are assumed to be hot structure and no TPS estimate was provided for the body flap TPS. 

The selected windward TPS consists of Lightweight Ceramic Ablators (LCA) consisting of rigid silica tiles with 

infused silicone (specifically the Silicone Impregnated Rigid Ceramic Ablator, SIRCA-15), and Shuttle-derived 

flexible blankets (AFRSI and FRSI) were selected for the leeward surfaces. Figure 155 presents the windward and 

leeward candidate TPS materials and their associated stack-ups. The leeward TPS consists of Shuttle heritage flexible 

blankets FRSI and AFRSI. The corresponding TPS material split lines are presented in Error! Reference source not 

found.6.  For the range of heating rates seen, the thermal response of SIRCA is limited to pyrolysis of the injected 

silicone, with no associated surface recession.  Figure 17 presents the TPS material thickness distribution for the 

selected baseline TPS material selection (SIRCA-15, AFRSI & FRSI), and the resulting TPS areal mass is shown in 

Figure 178.  Maximum SIRCA-15 thickness is approximately 5 cm, with both the FRSI and AFRSI at or near 

minimum gauge thickness, approximately 0.64 cm (0.25 inches). Further development efforts for dual-use TPS 
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materials should be pursued.  Dual-use, mass efficient materials in the 100 W/cm2 range are particularly needed for 

the Mid-L/D configuration. 

 

 
 Figure 144. Mission Max Temperatures.                 

 

 

Table 3. TPS System Mass for Candidate Materials. 
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Figure 155. TPS Materials Stack-up. 

 

 
Figure 16. TPS Materials Distribution. 
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Figure 17. Selected TPS Thickness Distribution.     Figure 18. Selected TPS Areal Density Distribution. 

H. Other subsystems (Power, Thermal, C&DH, C&T, GN&C) 

The power, thermal, guidance, navigation, and control equipment, command and data handling, and 

communications and tracking subsystems were sized with a common set of assumptions across the various entry 

concepts that were part of the EDL Architecture Study18. The combined dry mass of these subsystems is 1891 kg, or 

approximately 7.3% of the CobraMRV dry mass. The layout of these components within the aeroshell has a modest, 

but material impact on the location of the vehicle center of gravity.  

As shown in Figure 5, the CobraMRV concept offers a substantial amount of available volume for mounting 

subsystem components around the perimeter of the cargo bay and in the nose region of the aeroshell. As a result of 

this flexibility, it is possible to place greater emphasis on operational and functional considerations such as line 

replaceable unit (LRU) accessibility, wire harness and fluid loop optimization, physical separation of redundant 

strings, and mass properties. The general layout plan for the CobraMRV is to locate the main avionics bays in the nose 

region along with the secondary batteries and the integrated power electronics (IPE). The forward landing gear will 

also be mounted in the nose bay. The fuel cell stacks will be located near the forward bulkhead of the payload bay to 

promote efficient integration with the propellant feed system and active thermal control loops. The aft landing gear 

will be mounted outboard on the aft ring frame near the inner mold line.  Personnel resources were insufficient to 

pursue a detailed CobraMRV point design in 2016. 

 

1. Power Subsystem 
 

Under the current EMC architecture, the solar electric propulsion (SEP) stage provides power to the lander during 

the Earth-Mars transit. The SEP stage is jettisoned 48 hours prior to the aerocapture maneuver and the lander switches 

over to solid oxide fuel cells. The fuel cells consume methane and oxygen from the main propellant tanks to generate 

an average of approximately 7 kW during aerocapture and Mars orbit operations, with a peak of 16.4 kW during EDL. 

The fuel cells continue to provide an average of 10.7 kW of electrical power for up to 24 hours post-landing, by which 

point the ground power systems take over. The total energy generated by the fuel cells is approximately 340 kWh, 

which requires 42 kg of methane and 169 kg of oxygen. The lander power profile includes a 30% margin. 

The integrated power electronics are based on a VERSA-Module Euro (VME) chassis with boards derived from 

the Orion Multi-Purpose Crew Vehicle (MPCV). In addition to providing redundant solar array switching, each IPE 

is capable of switching sixteen 4 A /120 Vdc circuits, forty 1 A / 120 Vdc circuits, and eight 2 A / 28 Vdc circuits. 

Under the multiple lander EMC architecture, the astronauts are delivered to Mars orbit is a separate vehicle using 

a rapid transfer trajectory. One lander remains in a 1 sol elliptical Mars parking orbit for up to a year, waiting to 

transport the astronauts down to the surface of Mars. UltraFlex solar arrays providing 100 m2 of total area are deployed 

from the lander to generate electrical power during the extended Mars parking orbit phase. The current concept is that 

these solar arrays are jettisoned prior to deorbit. 

 

2. Thermal Control Subsystem 
 

Under the EMC architecture, the SEP stage does not provide thermal control to the lander. The CobraMRV is 

responsible for thermal control from Earth launch through EDL and during Mars surface operations. The current 
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CobraMRV concept includes two single-sided radiators (61 m2 total radiating area) mounted on the inside of the 

payload bay doors to provide thermal control during the Earth-Mars transit and Mars orbit operations. Water 

sublimation is used to supplement the radiators for peak heat rejection needs, as well as to provide thermal control 

during aerocapture and EDL when the cargo bay door radiators are not available. 

For the MAV payload, a pair of double-sided radiators providing 261 m2 of effective radiating area are deployed 

post-landing at Mars to support ISRU generation and liquefaction of oxygen, maintain the liquid methane and oxygen 

in the MAV propellant tanks with zero boil-off, and provide general thermal control to operational lander systems. 

The area of the deployable Mars surface radiators will be sized to meet the needs of each payload configuration. 

 

3. Command and Data Handling (C&DH) Subsystem 
 

The primary functions of the C&DH subsystem are to provide command and control, data processing, and data 

storage and retrieval. A group of four single board computers (SBCs) with non-volatile solid state recorders is 

implemented in a Byzantine resilient architecture with full cross strapping to satisfy the fail operational/fail safe 

requirement. The flight computers utilize a time-space partitioned operating system and communicate over a time 

triggered network. A distributed avionics approach is employed to reduce the length and mass of sensor wire harnesses. 

The precision landing and hazard avoidance (PL&HA) functions involve high speed processing of large quantities 

of sensor data during EDL for terrain relative navigation (TRN) and 3-D terrain mapping for hazard detection and 

avoidance (HDA). Given the uncertainties associated with predicting the capabilities of future space-qualified 

processors, a conservative approach was adopted in which a dedicated set of computers is included in the C&DH 

subsystem for the processing of PL&HA sensor data. 

Common avionics are employed for the SEP, MAV, and lander to enhance the opportunities for the reuse and 

sparing of LRUs, as well as to offer the potential for increased levels of functional redundancy during mated mission 

phases. 

 

4. Communications and Tracking (C&T) Subsystem 
 

The C&T subsystem is designed to provide direct-to-Earth (DTE) communication links via a high gain dish 

antenna using X-band and Ka-band. Sensitivity trades between electrical power consumption, maximum data rate, 

and dish diameter have been performed. The maximum design bit error rate (BER) of the communications subsystem 

is 10-5 with a link margin of -3 dB or better. No assumption is made regarding the availability of communications 

relay satellites in Mars orbit. In the absence of orbital relay satellites, communications between the Mars base and 

Earth will occur in 12 hour on/off cycles. 

The use of a high gain antenna places tight requirements on the pointing accuracy and stability of the host vehicle. 

In addition, multiple antenna boresight calibrations will be required to maintain communications performance during 

the long duration cruise. To avoid the anticipated scheduling difficulties associated with the DSN 70 m service, DSN 

34 m is assumed for all mission phases except EDL. Even using DSN 70 m, however, the data rate during the EDL 

phase will be very low and is intended only for anomaly and/or accident analysis. 

 

5. Guidance, Navigation, and Control (GN&C) Subsystem 
 

The GN&C subsystem design is based on the application of proven tools and techniques for the development, 

analysis, testing, and certification of rigid entry body control systems blending active aerodynamic control surfaces 

and RCS thrusters. The core GN&C sensor suite is composed of high performance, flight proven inertial navigation 

sensors based on lessons learned from previous Mars missions, including Viking, Mars Pathfinder, MER, and MSL. 

A stable time reference and consistent time synchronization across the GN&C subsystem and sensor suite is required 

to support precision navigation and pointing. Sensor calibrations will be performed periodically during the mission 

and prior to each trajectory correction maneuver to ensure execution within a 0.1% (1σ) magnitude error in delta-V 

and 3 mrad (1σ) error in attitude. Slosh perturbations are expected to be well controlled by the design of the tanks and 

propellant management devices. 

Ground-based navigation support from Earth includes orbit determination using DSN radiometric tracking data 

(S-band two-way range and 2/3-way Doppler) and nominal maneuver design. Position and velocity state vector 

updates will be uplinked periodically and prior to critical mission events. Maneuver information (burn times, 

magnitudes, and quaternions) will be computed on the ground and uplinked to the spacecraft. The GN&C subsystem 

design does not reflect any assumptions regarding the availability of other external navigation inputs, such as orbital 
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navigation satellites or surface beacons. If such assets are available, however, those measurements will be processed 

in the spacecraft navigation filter, as appropriate. 

Precision landing is achieved by augmenting the core GN&C inertial sensor suite with highly accurate surface 

relative measurements, including terrain relative navigation and lidar-based altimetry and velocimetry. TRN provides 

map-based position updates through the correlation of real time terrain data obtained from onboard sensors with a 

priori reconnaissance data stored onboard the spacecraft, thus enabling early and efficient maneuvering to minimize 

global landing error and avoid large terrain hazards. Passive optical TRN utilizes commercially available, space-

qualified cameras and optics, and was recently baselined on the NASA Mars 2020 and Resource Prospector missions. 

Passive optical cameras have the advantage of low mass and power relative to active sensors, but the mission design 

must provide adequate ambient lighting conditions along the EDL ground track. Active lidar-based TRN solutions are 

available if operation in darkness or near darkness is required.  

Precision landing using orbital reconnaissance data enhances the probability of safe landing through the avoidance 

of identifiable hazards, typically a couple of meters in size or larger. Precursor missions can be employed to conduct 

detailed ground surveys to identify (or even prepare) areas free of hazardous slopes and surface roughness. Given that 

a priori knowledge, a controlled precision landing is equivalent to a safe landing. In the absence of high fidelity local 

maps, an autonomous, onboard hazard detection and avoidance system can be used to improve landing safety. The 

HDA system developed under the NASA Autonomous Landing and Hazard Avoidance Technology (ALHAT) project 

uses a gimbaled 3-D lidar sensor to rapidly generate a high resolution terrain map during the landing trajectory. After 

identifying and ranking the candidate landing sites, a small hazard avoidance maneuver is employed to position the 

lander for terminal descent. NASA JPL is currently studying the infusion of PL&HA functions on a Europa lander 

mission. 

I. Mass Properties and Opportunities 
Summary mass properties for the reference CobraMRV configuration are provided in Table 4. The CobraMRV 

has a gross mass of 61.1 mt, a dry mass of 26.1 mt, usable propellant of 14.4 mt, and a delivered cargo mass of 20 mt. 

The non-propellant category covers the thermal control fluids, pressurization fluids, propellant reserves and residuals, 

and fuel cell reactants that are commonly bookkept under inert mass. The mass growth allowance (MGA) percentages 

for each of the major dry mass categories are listed in Table 4. The effective MGA for the vehicle is 21.5%. 

The single largest contributor to the CobraMRV dry mass is the structure at nearly 55%. The propulsion system is 

next at just over 20%, and the TPS is third at nearly 12% of the dry mass. The remaining 13.5% consists of power, 

thermal control, avionics, aerosurfaces, and mechanisms.  

The usable propellant is calculated based on 650 m/s of delta-V for the main propulsion system at an effective 

specific impulse (Isp) of 360 seconds, and 255 m/s of RCS delta-V at an effective Isp of 325 seconds.  The effective 

oxidizer to fuel mixture ratio (by mass) for the CobraMRV is 3.13. The main propulsion system uses a mixture ratio 

of 3.2. The RCS uses a more fuel-rich propellant mixture with a ratio of 3.0. 

Early primary structural mass estimates for a basic CobraMRV aeroshell without cargo bay doors ranged from 6.3 

to 6.7 mt. The mass estimates obtained from simplified finite element model (FEM) analyses were consistent with the 

results from other Pre-Phase A structural estimation techniques, such as simplified skin-stringer estimates and Mass 

Estimating Relationships (MERs). A subsequent FEM analysis using a non-load-bearing cargo bay door assumption 

(similar to the Space Shuttle Orbiter) and a more complete set of load cases yielded a mass estimate of 11.9 mt 

inclusive of the primary and secondary structure, plus attachment and support for the MAV and the CobraMRV 

descent engines and tanks. Including a 20% mass growth allowance (MGA), the 14.3 mt structural mass estimate 

represents approximately 55% of the total dry mass of the CobraMRV. At the current scale of the CobraMRV concept, 

each 1000 kg decrease in basic structural mass reduces the vehicle gross mass by 1560 kg, or roughly a 3:2 ratio. Of 

the additional 560 kg of vehicle gross mass reduction, approximately 360 kg comes from the reduction in propellant.  

The structural FEM analyses include a 6.4 mm maximum skin deflection constraint based on rigid TPS design and 

flight experience. Since nearly two-thirds of the CobraMRV aeroshell is covered with flexible FRSI and AFRSI TPS, 

this deflection constraint may be somewhat conservative when applied to the entire vehicle. Analyses indicate that 

relaxation of the FEM skin deflection constraint to 12.7 mm may yield up to a 40% reduction in structural mass. 

However, until SLS minimum frequency constraints and other practical considerations are factored into the structural 

analyses, it is unclear to what degree the CobraMRV primary structure can be optimized. 

The vehicle fineness ratio (length/diameter) also has a material impact on the structural mass. The reference 

CobraMRV concept was sized to maximize utilization of the SLS 10 m payload fairing with an 8.8 m diameter and 

19.8 m length, or a fineness ratio of 2.25. From this starting point, FEM analysis has shown that a 1 m decrease in the 

length of the CobraMRV will result in a reduction in vehicle gross mass of roughly 1000 kg. This effect is non-linear, 

however, with the incremental mass benefit decreasing as the fineness ratio decreases. The effects of reducing the 
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fineness ratio on vehicle aerodynamics and stability and control have not yet been assessed, although it is clear that 

the ballistic number will rise because the reduction in drag area will outpace the reduction in entry mass. An increase 

in ballistic number will affect the CobraMRV EDL trajectory and, in turn, the total heat load and maximum heat flux. 

However, since the CobraMRV is operating well within the limits of SIRCA, the mass impact to the windward ablative 

TPS is expected to be small for modest changes in vehicle fineness ratio. An increase in ballistic number will also 

alter the altitude/velocity conditions at the transition from aerodynamic entry to powered descent and landing. Changes 

to the transition conditions will impact the amount of propellant required to perform powered descent. 

 The operational benefits of cargo bay doors were weighed against the inefficiencies of the large cargo bay door 

cutout in the primary structure, and two design alternatives were identified: load bearing, single-use cargo bay doors, 

and elimination of the cargo bay doors in favor of aft cargo extraction. Both of these design alternatives require the 

addition of articulated radiator panels to provide thermal control during the Earth-Mars transit and in Mars orbit. The 

design option employing a single use cargo bay door substitutes a pyro release system for the latching mechanism. 

The option eliminating the cargo bay doors requires the addition of a mechanical system for the aft deployment of a 

fully fueled MAV. Even so, it is anticipated that either of these alternatives will result in a substantial net mass 

advantage relative to the reference CobraMRV configuration. 

The use of conventional structural materials for the reference CobraMRV design provides opportunities for mass 

reduction via the application of advanced composite materials and warm structure or hot structure. Mass savings can 

be achieved through the targeted application of advanced materials for skin panels, payload bay doors, and the aft 

access ramp, as examples. Given well defined load cases, a broader and more comprehensive application of advanced 

composite materials may yield somewhat larger structural mass reductions. Given a close match in thermal coefficient 

of expansion, the use of composite skin panels may enable direct bonding of the rigid windward TPS. This reduces 

TPS mass and complexity by eliminating the strain isolation pad and second layer of adhesive RTV. It may also be 

possible to eliminate gap fillers between TPS elements by reducing the size of the gaps. Depending on the choice of 

composite material for the skin panels, it may also be possible to increase the peak bond line temperature, thus reducing 

the TPS thickness and mass. Another option would be to eliminate the bonded TPS by employing a hot structure 

design, similar to the advanced carbon-carbon used on the Space Shuttle orbiter, or the carbon/silicon carbide used for 

the X-38 nosecone, fin leading edges, and split body flaps. Trade studies will be required to assess the relative cost, 

technical, and schedule risks of the various mass reduction opportunities for the CobraMRV. 

The EMC ground rules specify the delivery of 20 mt of usable payload to the surface of Mars. However, the design 

of the payloads is affected by the mission load cases. In comparison to the low ballistic coefficient (HIAD and ADEPT) 

configurations, the Earth launch and Mars entry load cases for the CobraMRV are more challenging in terms of the 

variations in load paths. This is analogous to the launch, trans-Atlantic abort, and entry load cases for Space Shuttle 

payloads. The expectation is that this will result in a payload mass penalty that must be absorbed by the CobraMRV 

design in order to maintain equivalent payload performance with the other decelerator concepts. The magnitude of 

this payload mass penalty is unclear, and it is anticipated to vary with the type of payload. 

In comparison to blunt body decelerator concepts with deployable drag devices, the rigid body CobraMRV is 

anticipated to have a higher gross mass for a given cargo capacity. Vehicle mass is an important design factor for any 

spacecraft, and is particularly critical for a landing vehicle that falls at the end of a chain of propulsive maneuvers. 

Vehicle mass impacts the ability of the SLS to deliver the CobraMRV and SEP stage to orbit, and a higher liftoff mass 

means a longer spiral out of Earth orbit and an extended Earth-Mars transit time. However, the higher gross mass of 

the CobraMRV concept must be weighed against the benefits of the configuration – mature materials, tools, and 

processes, proven flight control techniques, superior cargo protection, and potential advantages in terms of ground 

operations at Mars. 
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Table 4. Master Equipment List (System Level). 

 

 

  

III. Conclusions 
 Design Analysis Cycle 1 for a rigid, human-scale, Mid-L/D vehicle optimized for Mars aerocapture and EDL 

has been completed. The CobraMRV design closes with margin at a gross mass of 61.1 mt and satisfies the EMC 

requirement to deliver 20 mt of cargo to the surface of Mars. The CobraMRV design leverages proven design and 

analysis tools and materials in addition to well-established validation, verification and certification processes for rigid 

entry vehicles. The CobraMRV also employs proven rigid body flight control techniques for aerocapture and EDL, 

combining active aerosurfaces with RCS thrusters to reduce the requirements for full scale flight testing. The emphasis 

on proven technologies and processes is expected to significantly reduce the technical, schedule, and cost risks of the 

CobraMRV development program relative to low ballistic number concepts augmented with deployable drag devices. 

The CobraMRV shape is designed to maximize the benefits of aerodynamic drag and lift during the Mars 

atmospheric flight phases. The higher L/D provided by the slender body helps to offset the effects of the higher ballistic 

number resulting from the rigid body constraints on drag area. The higher L/D also increases hypersonic crossrange 

capability, provides control margin for load and heating alleviation, and enhances vehicle robustness to aerocapture 

and entry dispersions. The combination of aerodynamic shape, ballistic number, and L/D offered by the CobraMRV 

configuration has led to a reduction in the Mach number at SRP start as compared to previous Mid-L/D studies.  

The CobraMRV aeroshell fully protects the cargo from the aerodynamic and aerothermal environments during 

aerocapture and entry, as well as the engine plumes and surface dust and debris generated during powered descent and 

landing. This comprehensive cargo protection can be extended throughout all flight phases by removing the in-space 

radiators from the inner surfaces of the PLB doors in favor of separate deployable panels. The CobraMRV concept 

also includes a large cargo bay, low deck height, and aft access ramp which are expected to provide superior 

operational flexibility on the surface of Mars in terms of cargo handling and ease of crew ingress and egress, both 

IVA and EVA. In contrast, taller, stacked lander configurations will likely require cranes and other specialized ground 

support equipment.  

MGA Mass (kg) % Gross Mass % Dry Mass

1.0 20.0% 14257 23.3% 54.7%

1.1 9624 36.9%

1.2 4633 17.8%

2.0 24.1% 5263 8.6% 20.2%

2.1 4046 15.5%

2.2 1217 4.7%

3.0 27.7% 1217 2.0% 4.7%

4.0 23.7% 328 0.5% 1.3%

5.0 25.0% 347 0.6% 1.3%

6.0 21.3% 4641 7.6% 17.8%

6.1 3032 11.6%

6.2 260 1.0%

6.3 364 1.4%

6.4 Landing Gear 985 3.8%

21.5% 26052 42.6%

7.0 20000 32.7%

8.0 684 1.1%

46736 76.5%

9.0 14363 23.5%

9.1 9448 15.5%

9.2 4688 7.7%

9.3 227 0.4%
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During Design Cycle 1, several opportunities for reducing vehicle structural mass were identified. Structural mass 

represents approximately 55% of vehicle dry mass, and each metric ton of dry mass that can be eliminated results in 

an additional savings of 300 kg of usable propellant. The structural efficiency of the CobraMRV aeroshell can be 

improved by either eliminating the PLB doors or by carrying loads through the PLB doors. Structural mass can also 

be reduced by shortening the aeroshell as long as the cargo dimension and volume requirements are still satisfied. 

Potential gross mass savings on the order of several metric tons or more is possible via design optimization, including 

tailoring of structural stiffness/deflection constraints. Advanced structural and TPS materials, including warm or hot 

structure carbon composites and advanced lightweight ablators, may offer additional mass savings at the expense of 

increased risk to vehicle development cost and schedule.  

Refinements to the CobraMRV concept to be addressed in future studies include a detailed subsystems layout, SRP 

engine integration and performance, integration of key EMC cargo elements including the MAV and surface habitat, 

and SLS integration including stiffness, frequency, and loads constraints.  

Additional forward work on the CobraMRV concept includes more detailed analyses of the mass reduction and 

design refinement strategies described above. The CobraMRV CAD model will be refined with more detailed 

subsystem and cargo layouts to reduce uncertainties in the vehicle mass properties. Finite element models will be 

matured to improve knowledge of the vehicle sensitivities to various design parameters. However, any changes to the 

CobraMRV OML will require a reassessment of the vehicle aerodynamics and aerocapture/EDL aerothermal 

environments. In 2017, a supersonic ballistic aerodynamics test is planned to help identify the aerodynamics and 

stability derivatives for the CobraMRV OML. The team will also continue to develop and refine the CobraMRV 6-

DOF EDL trajectory simulation to explore trajectory performance, guidance design, vehicle stability, aerosurface and 

RCS usage, and landing performance, including the 50-m radius EMC landing precision requirement. 
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